Halogenated thymidine analogues restore the expression of silenced genes without demethylation.
نویسندگان
چکیده
Transcriptional silencing of tumor suppressor genes by aberrant DNA methylation is a characteristic frequently observed in cancer cells. Therefore, reversing this process is a therapeutic target against cancer. In this study, we established a screening system for silencing inhibitors with cell lines transfected by a retroviral vector containing a luciferase gene. More than 100 nucleosides were tested for antisilencing activity with a selected clone in which the silenced expression of luciferase could be recovered by 5-aza-2'-deoxycytidine. A group of halogenated thymidine analogues was found to reactivate transcription of not only the reporter retrovirus vector but also endogenous glutathione-S-transferase 1 gene, without influence to DNA hypermethylation. Gel mobility shift assay showed that 5-bromo-2'-deoxyuridine (BrdUrd) or 5-iodo-2'-deoxyuridine incorporation did not affect the binding of the methyl-CpG binding protein motif to methylated DNA. Finally, in the retroviral promoter, BrdUrd treatment increased the acetylated histone H3 level and decreased methylation of histone H3 Lys9 in accordance with recovered transcription. This study shows that halogenated thymidines have an antisilencing effect without changing DNA methylation status by interfering with step(s) between DNA methylation and histone acetylation.
منابع مشابه
5-Halogenated thymidine analogues induce a senescence-like phenomenon in HeLa cells.
We tested various thymidine analogues for induction of a senescence-like phenomenon in HeLa cells. CldU, BrdU, and IdU similarly induced the morphology of senescent cells and typical senescence markers. Thymidine analogues other than 5-halogenated forms caused only cell death. BrdU efficiently killed the cells in cooperation with irradiation with light and a brief treatment with Hoechst 33258, ...
متن کاملInhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes.
Epigenetic chromatin modification is a major regulator of eukaryotic gene expression, and aberrant epigenetic silencing of gene expression contributes to tumorigenesis. Histone modifications include acetylation, phosphorylation, and methylation, resulting in a combination of histone marks known collectively as the histone code. The chromatin marks at a given promoter determine, in part, whether...
متن کاملNovel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes.
PURPOSE Abnormal DNA CpG island hypermethylation and transcriptionally repressive histone modifications are associated with the aberrant silencing of tumor suppressor genes. Lysine methylation is a dynamic, enzymatically controlled process. Lysine-specific demethylase 1 (LSD1) has recently been identified as a histone lysine demethylase. LSD1 specifically catalyzes demethylation of mono- and di...
متن کاملTrichosanthin inhibits DNA methyltransferase and restores methylation-silenced gene expression in human cervical cancer cells.
Epigenetic silencing of tumor suppressor genes is a well-established oncogenic process and the reactivation of tumor suppressor genes that have been silenced by promoter methylation is an attractive molecular target for cancer therapy. In this study, we investigated the demethylation activity of trichosanthin (TCS, the main bioactive component isolated from a Chinese medicinal herb) and its pos...
متن کاملInduced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter
Increasing evidence indicates that active DNA demethylation is involved in several processes in mammals, resulting in developmental stage-specificity and cell lineage-specificity. The recently discovered Ten-Eleven Translocation (TET) dioxygenases are accepted to be involved in DNA demethylation by initiating 5-mC oxidation. Aberrant DNA methylation profiles are associated with many diseases. F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 65 15 شماره
صفحات -
تاریخ انتشار 2005